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1. INTROOUCTION

The progress achieved this year includes the derivation of the Coherent Quantum 1/f Effect from
a special quantum-electrodynamical propagator known since 1975, and from the sufficient 1/f
Criterion Introduced In the previous Annual Report (Sec. II and III, respectively). It also includes the
successful practical application of the quantum 1/f theory to quartz resonators and the verification of
the results at NIST-Boulder with the cooperation of Fred Walls (Sec. IV). It further includes in Sec. V

the practical application of the quantum 1/f theory to infrared detectors in the presence of radiation, In
particular, a proof of the absence of quantum 1/f noise in the process of carrier photogeneration in
semiconductors. it finally includes In Sec. VI the recalculation and first time graphical representation
of quantum 1/f mobility fluctuations in Si and GaAs samples, based on the author's new cross-
correlation formula, as a function of temperature and doping level.

We also mention the NSF-sponsored organization by the author of the "V. International van der
Ziel Symposium on Quantum 1/f Noise and Other Low-Frequency Fluctuations" at the University of
Missouri-St. Louis on May 22-23, 1992 with a 100% larger participation than ever before, and the
ongoing organization by the author of the *XII Int. Conf. on Noise in Physical Systems and 1/f Noise" in

St. Lois, for Aug. 16-20, 1993. Finally, we mention the creation of an Institute of Molecular
Electronics at the University of Missouri St. Louis with the author's participation in September 1991.
My collaborators have been F. Walls, E. Bernard, T. Chung, A. Forst-Chung, Y. Zhang, Xuewei Hu, Jian
Xu, and I. Prolelko. These results will be briefly presented below.

II. COHERENT QUANTUM 1/1 CHAOS

Conventional quantum 1/f fluctuations of physical cross sections and process rates have
been Introduced by us as a fundamental infrared divergence phenomenon in 1975 [1]. Some of
the subsequent publications 12]-[141 have shown this new effect to be unaffected by the
presence of the thermal radiation background [41, [51, some have derived it with wave packets

[11), Including a finite mean free path [9], in second quantization [13], with the Keldysh-
Schwinger method [121, or In the Van Hove weak Interaction limit [14, some derived its
characteristic functional (7], or applied it to the calculation [10] of mobility and
recombination speed fluctuations In semiconductors and semiconductor devices. Others [15] -
[27) verifIed the new effect experimentally and successfully applied it to electronic devices.

The present paper derives a related fundamental effect which we call the coherent 1/f
effect, with elementary methods of quantum electrodynamics and non-relativistic many-body
theory. Our derivation uses the new picture Introduced by Dollard (281 and generalized by
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Kulish and Fadde'ev [291 and later by Zwanziger [301, In agreement with earlier work by
Chung [311 and by Kible [32]. In this new picture, the asymptotic Coulomb Interaction is

ncluded In the unperturbed Hamiltonan rather than in the perturbation part. This leads to a
more complex physical free particle notion which Includes a coherent photon cloud, and replaces
the pole In the propagator with a branch point. It also leads to a smeared-out mass shell. Using

this picture, we can neglect the remaining part of the interaction if we limit ourselves to the

asymptotic region of large distances and times, which are important in the case of 1/f noise.

For N electrons in a Fermi sphere shifted in momentum space by a vector Pa and

occupying N/2 orbitals ef, the propagator derived by these authors [301 can be reduced for

large time components of x'-x to the non-relativistic form

-i<*c oTVs(X'),#t(x)10o> a 86, Gs(x'-x)

, (i/V)E{expi[p(r-r').p 2 (t-t')/2m]/h}np,s
P

x{-ip (r-r')/h'+i(m2o2+ p2)1/2(t-t,)(c/lf)}a/,x" .

Here a-e 2 /11c-1/137 is Sommerfeld's fine structure constant, np,s the number of electrons in

the state of momentum p and spin s, m the rest mass of the fermions, 8 s,' the Kronecker

symbol, c the speed of light, x-(r,t) any space-time point and V the volume of a normalization

box. T is the time-ordering operator which orders the operators in the order of decreasing

times from left to right and multiplies the result by (-1)P, where P is the parity of the

permutation required to achieve this order. For equal times, T normal-orders the operators,
i.e., for t-r the left-hand side of Eq. (1) is i<oIst(X)vs,(x')Ijo > . The state 0€ of the N

electrons is described by a Slater determinant of single-particle orbitals.

Consider first the case tt for simplicity, although only the case of large t-r can be
expected to be experimentally applicable. The pair correlation function can then be decomposed

as follows

<,or (x)V11x')vs'(x')Vs(x)lI*o> - < olvI(x)Is(x)l< o><oolvtx')vs'(x')l ,
- <o0lt(x)vs'(x')Io><Ool vtix')vs(x)l0o>. (2)

The first term can be expressed in terms of the particle density of spin s, n/2 - N/2V -

,41ol(x)Vs(x)jo>, while the second term can be expressed In terms of the Green function

(1) in the form

A",(x-xl 5 (n/2)2 +89W Gs(x'-x)Gs(x-x'). (3)



The Orelative" autocorrelatlon function A(x-x') describing the normalized pair correlation
Independent of spin Is obtained by dividing by n2 and summing over s and s!

A(2C-x' - 1 + (1/l 2)7,Gs(x-x)G(x'-x)

-1 - (1/N2)1 £{expl(p-p)(r-r')/'J~np,snp',s
S PP,

Here we have used Eq. (1). The low-wavenumber part Al of this relative density

autocorrelation function is given by the terms with p-pl.

AI(x-x') - (11N2)y ~n~I~r)/If 2 a/x(5

I - (2/N2 )[V/(2jclf) 3 ] Jd3pI(p+po)(r-r)/If 2 cI/w
P<PF
a a a

-1- (2/N2 )[V/(2xff)3 j Jch JOP2 JdP 3 1(P3i-PO3)(rr')/l 2 cx'x
-a -a -a

-1- (2/N2 )[V/(22f)3 8a 3la(r-r-)/hIl 2a/

-1 -(1/N)[(x/6)1/
3Ppjr-r'/j 2 u/x. for PFP0p3; (6)

-1 -(1/N)IpO(r-r')/fI
2 a1I forPF"cP03; (6')

In view of the smallness of 2az/& for pF>>po3 we have integrated in cartesian coordinates,
aprXoximating the Fermi sphere by a cube Of side 2a with a. (icI6)113PF. The result Is

Practically Independent of Pa and Of P03-pO(r-r')/Ir-r'j. The factor (x/6)2aJ31 can be

neglected For pF.ccp(o, we used the mean value theorem for estimating the Integral over d3p in

spherical coordinates. In all ca3s the autocorrelation decreases very slowly from 1 when Ir-

r1 Is Increased to very large values. Writing the rectangular bracket in Eq. (6) as an

exponntia function Of Its logarithm, expandlnQ the resulting exponential, and keeping only the
first term, we obtain with pr./ff~kF

A (x-x) -(1-2/N) + (6/ 3)2a13x9 [1/kpjr-rIIj2ai") N



t@0

= (1-2/N) + (6/X) 2 C/3x[llkF]2/x(2a/N)jcos[klr-r'ldk/kl- 2 a/.

0

-{N-2 +(2a/x)j[k/kF]2W1Xcos[klr-r'l]dk/k)/N for PF>>Pos; (7)

0

-.{N-2 +(2aoJx[k/ko]2W1Xcos[kpo(r-r')/po] dk/k}/N for PF<<Po3; (7')

Here we have used a well-known Fourier integral [351 and we have introduced ko-Po/1.

According to the Wiener-Khintchine theorem, the coefficient of the cos gives the spectral

density. To get it for the fractional fluctuations 8n/n, we divide by the constant term N-2

Sbn/n(k) - [2a/xk(N-2)][k/K] 2 a/x , (8)

where K-k, for pF>>poa as in the case of metals with spherical wave symmetry, and K-ko for

PF<<PoS. Although inapplicable, this pure 1/k spectrum is the wave-number equivalent of the

coherent quantum 1/f noise derived earlier [33], [34] in excellent agreement with the

experiments on large electronic devices [151, [251. Due to 2oA<<l the second factor is
practically unity and of no importance, except for eliminating the logarithmic divergence from

the spectral integral. This wave number spectrum also entails a 1/f frequency spectrum

obtained by writing dk/k-df, as was shown in detail in a previous paper [13]. For equal

times our result can not be expected to be valid, due to the asymptotic character of Eq. (1). We

shall now derive the 1/f spectrum directly below.

If bat', Eq. (2) is replaced by

% T(x)s(x) x)v(x')o> - <olv(X)s(X)loo><
- 'coITVs(x')Vt(x)too><OoITVs(x)Vtx')I0o>. (9)

Eq. (3) remains the same, except for the middle part which is replaced by the left hand side of
Eq. (9). Eq. (4) becomes now

A(x-x) - 1 - (1/n2 ).Gs(x-x')Gs(x'-x)
6

- 1- (1/N 2 ). E{expl[(p-p')(r-r')-(p 2 -p 2 )(t-t')/2m]/h')np,snp,,s
s pp,
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" I{p (r- r)/If- (m2C2+p2) 1/2 (t-t) (c/])}a/

" {p '(r-rl)/hf- ( m2c2+ p ,2) 1/2 (t.t,) (c/i')}a/x" ( 10 )

Hem we have used again Eq. (1). The low-frequency and low-wavenumber part A4 of this

relative density autocorrelatlon function Is also given by the terms with p-p'.

AI(x-x') - 1 (1/N2 ). .np,s

s p
x~p (r-r)/If-(m2c2+p2)1l/2(t-t)(c/]{)}2a/x(11)

-1 -(2/N 2)[V/(2xf) 3 fd~pl(p+po)(r-r')/I'-[m 2c 2+(p+po)2]l/ 2 (t-tI)(c/lf)I2 a / x

- 1 - (1/N)Ipo(r-rl)/h'-mc 2 /lii2a for PI"<Ipo3 -mc 2 r/zI. (12)

Hem we have used the mean value theorem, considering the 2oax power as a slowly varying

function of p and neglecting p0 In the coefficient of r: ,t-t', with zIr-rI1. Writing the power

again as an exponential function of its logarithm, expanding the resulting exponential, and
keeping only the first term, we obtain with (N/mc2 )lpo(r-r')/h'-mc 2 dC/lfl..-r-po(r-

r')/mc 2 1

AI(x-x') - 1[(mc2 /f])e] 2wx/N
0

- (1-2/N) + [Ll/mc2 ]2x(2aNx)jcos[coeldo)/o)1-2J x .

0

- {N-2 + (2./x)J[If(o/mc22j2Wxcos[oae] dco/ao}/N. (13)

According to the Wlener-Khlntchine theorem, the coefficient of the cos gives the spectral

density. To get it for the fractional fluctuations n/n, we divide by the constant term N-2

San/n(k) - (2c/xM(N-2)][c/mc 2J 2G/X. (14)

This result Is also applicabIe for the particle current fluctuation spectrum. Indeed, for current

denstl* fu ons8j we include a (N/mi)V in front of each of the two V operators in Eq. (9),

a factor pppo2 In Eq. (10) after the summation signs, a factor (p/po)2 in the first form of Eq.

8



(11.), a factor (p~po)2/po2 In the second form, and no changes in Eqs. (12)-(13). Eq. (14)

AjAjAL- r2a/xacnN-21rlfc/c 212WN. (15)

This result coincides with our earlier theoretical result for coherent quantum 1/f noise if we
replace N with N-2. The validity of this equation Is restricted to low frequencies and wave-
numbers. This equation Is In excellent agreement with mobility and diffusion 1/f noise in large
devime.

Finally, we consider the errors caused by the neglect of higher order terms in the
expansion of the exponential functions resulting from Eqs. (6)-(6') and (12). For a thermal
electron and r-1cm in Eq. (6') we get kr-i 012 and (2ahc)ln(kr)-O.1 2, yielding an error of
12%. For t-1O'7s In Eq. (12), which is the age of the universe, we get an error of 40% as the
upper limit. Therefore a more exact treatment is of some interest. Using the identity [35]

Go

0)2i/X , [-(2cchx) j(O2 /coS(w)d6/o]
0

x~cosa + (2aIx) i (6eno)2fl-2 aI/,K(2n)1(2n-2a/Ix)l)lI, (1 6)
n-0

with arbitrarily small cutoff o, we obtain from Eq. (12) the exact form

Al(x-x') - 1 + [(2a/xN) P M c2/lto)21cxoS(On)do/coJ

x~coscx + (2a/x) i(9 0) ) 2 n 2 a([(2 n) 1(2 n -2 ax)Pl] (17)
n=O

This would Indicate a w-1-2/ spectrum and a 1/N dependence of the spectrum of fractional n
and j fluctuations, I we neglect the curly bracket in the denominator which Is close to unity for
very small ft. We thus realize that the unusual N-2 dependence In Eqs. (14)-(15) is caused
by t fored Introduction of the Integrable o-2w- spectrum In place of the 0 -1-2WX Spectrum.

Due to the smallness of a both forms coincide in practical applications. Eq. (15) for the
coherent QED chaos process in electric currents can thus be written also In the form

Sim/ 1ik)- - ag xN1IMe LKa 2 ' - 2WzXo)N - O.0065o.(18

9



This result derived directly earlier [331, [341, is in excellent agreement with the
measurements [15J, [251, in large {see [34] for a definition of "large" or "extended', and for
an Interpolation with the conventional quantum 1/f chaos effect} devices such as large n+p Hgl.

xCdxTe Infrared detector diodes. It Is also close to the empirical value of 0.002/oN observed

earlier by Hooge [361 in semiconductors and metals. Being observed In the presence of a
constant applied field, these fundamental quantum current fluctuations are usually interpreted

as mobility fluctuations.

Ill. APPUCATION OF THE SUFFICIENT 1/f CRITERION TO QUANTUM 1/f CHAOS

The nonlinearity causing the 1/f spectrum of turbulence in both semiconductors and
metals is caused by the reaction of the field generated by charged particles and their currents

back on themselves. The same nonlinearity is present in quantum electrodynamics (QED),
where it causes the Infrared divergence, the infrared radiative corrections for cross sections

and process rates, and the quantum 1/f effect. We shall prove this on the basis of the sufficient
criterion for 1/f spectral density in chaotic systems, derived in the previous annual report.

Consider a beam of charged particles propagating in a well-defined direction which we
shall call the x direction, so that the one-dimensional Schr dinger equation describes the
longitudinal fluctuations in the concentration of particles. Considering the non-relativistic case

which is encountered in most quantum 1/f noise applications, we write in second quantization

the equation of motion for the Heisenberg field operators V of the in the form

lh¥/at - (1/2m)[-ihV -(e/c) A]2V, (19)

With the non-relativistic form J - -ihyr'VV,/m + hermitic conjugate, and with

A(x,y,z,t) .(V2cmi)[!WV3ddx ,  (20)

we obtain

irv/at - (1/2m)[-ihV -(elV2c 2 mi) frwIx-x'l xJ J . (21)

At very low frequencies or wavenumbers the last term in rectangular brackets is dominant on

the r.h.s., leading to

10



lr8,i1at - ('1/2m)[(e lV2c2m) J Ix-x,]°xv. (22)

For x replaced by .x, and x' replaced by Xx', we obtain

i =WV/It - (-12m)[(en/2c2m)J[ .x-xl /) O l3dX,2  , = X-PHiV. (23)

This satisfies our homogeneity criterion with p--2. Our sufficient criterion only requires

homogeneity, with any value of the weight p, for the existence of a 1/f spectrum in chaos.

Therefore, we expect a 1/f spectrum of quantum current-fluctuations, i.e., of cross sections

and process rates in physics, as derived in detail in Sec. II above. This is in agreement with the

well-known, and experimentally verified, results of the Quantum 1/f Theory.

In conclusion, we realize that, both in classical and quantum mechanical nonlinear

systems, the limiting behavior at low wave numbers is usually expressed by homogeneous

functional dependences, leading to fundamental 1/f spectra on the basis of our criterion.

IV. QUANTUM 1/f FLICKER OF FREQUENCY IN QUARTZ RESONATORS:THEORY AND EXPERIMENT

IV. 1. Introduction

Flicker of frequency noise is an important characteristic of quartz resonators which limits

their stability and determines their utility for most applications. The 1/f contribution to frequency

stability is best obtained by observing the stability over a range of measurement times in the time

domain, or over a range of frequencies in the frequency domain. From the extended data one can fit a

flicker of frequency model to the data that excludes the contributions from random walk frequency

modulation and from the drift present in many resonators and oscillators (Fig. 1).

One of the first who systematically studied the 1/f noise as a function of geometry, temperature

and 0-factors was Gagnepaln [37]. He noticed empirically that the 1/f part of the spectral density of

fractional frequency fluctuations, Sy(f), varied as Q-4 for resonators between 1 and 25 MHz. As the

temperature changes, the 0-factor of a resonator changes. This allows us to exclude the effect of many

other factors. Additional work by Parker, however, showed that the data from both bulk acoustic wave

(BAW) and surface acoustic wave (SAW) devices could be roughly fit to the the same model [381, if one

assmes a Q-4 dependence for the phase noise S insted of Sy. The fit is shown on Fig. 2.

From a theoretical point of view, fundamental work by this author [39], inspired by the

quantum 1/f theory [401, has derived the Q-4 depenence of Sy for all resonators from first principles

11



already 1979. Work on many systems other than quartz has yielded very good quantitative agreement
between theory and experimental data for quantum 1/f noise [411. This paper refines the previous
theoretical work on 1/f frequency noise in quartz to suggest a better framework for predicting the
level of 1/f frequency noise in quartz resonators over a wide range of frequencies and 0-factors.

IV. 2. Theory of 1/f Frequency Noise in Quartz Resonators

According to the general quantum 1/f formula [40], r- 2Sr(f)=2aA/f with a=e 2/hic =1/137

and A,2(AJ/ec)2/3x is the quantum 1/f effect in any physical process rate r. Setting J-dP/dt=P
where P is the vector of the dipole moment of the quartz crystal, we obtain for the fluctuations in the
rate r of phonon removal from the main resonator oscillation mode (by scattering n a phonon from any
other mode of average frequency <(o>) of the crystal, (or via a two-phonon-process at a crystall defect

or impurity, involving a phonon of average frequency <wa'>) the spectral density

Sr(f) - r 2 44(&P) 2 /3xe 2c2, (24)

where (AP)2 is the square of the dipole moment rate change associated with the process causing the
removal of a phonon from the main oscillator mode. To calculate it, we write the energy W of the
interacting resonator mode <o> in the form

W - nh<ro> - 2(Nm/2)(dx/dt) 2 -(Nm/e 2 )(e dx/dt) 2 =(m/Ne 2 )e2 (P) 2 ; (25)

The factor two includes the potential energy contribution. Here m is the reduced mass of the

elementary oscillating dipoles, e their charge, e a polarization costant, and N their number in the

qurtz crystal. Applying a variation An=1 we get

wn/n - 21AP/IlI, or &P-P/2n. (26)

Solving Eq. (25) for P and substituting, we obtain

iAPl - (NTh<o)>/n) 1 / 2 (e/2P) (27)

Substituting &P Into Eq. (24), we get

r- 2Sr(f) - NaMl<a>/3nxmc 2fe2 , A/f. (28)

12



This result is applicable to the fluctuations in the loss rate r of the quartz.
The corresponding resonance frequency fluctuations of the quartz resonator are given by2

- 2 Se(f) - (1/4Q)(A/f) - Nalh<w>/12nimc 2 fe2Q4, (29)

where 0 is the quality factor of the single-mode quartz resonator considered, and <o)> is not the
circular frequency of the main resonator mode, too, but rather the practically constant frequency of the

average interacting phonon, considering both three-phonon and two-phonon processes. The

corresponding &P in the main resona,.,r mode has to be also included in principle, but is negligible

because of the very large number of phonons present in the main resonator mode.

Eq. (29) can be written in the form

S(f) - pV/fQ 4 , (30)

where, with an intermediary value <0>=108/s, with n=kT/h<w>, T--300K and kT=4 1014,

P = (N/V)an<o>/12nxe2 mc 2 = 102 2(1/137)(10" 27 108)2/12kT10 -27 9 1020 = 1. (31)

The form of Eq. (30) shows that the level of 1/f frequency noise depends not only as Q-4 as

previously proposed, but also on the oscillation frequency or the volume of the active region. This

model qualitatively fts the data of Gagnepain [37,48 ] where he varied the 0-factor with temperature

in the same resonator (but not frequency or volume).

The model also provides the basis for predicting how to improve the 1/f level of resonators,

beyond just improving the Q-factor, which has been known for many years. Since the level depends on
active volume, one should use the lowest overtone and smallest diameter consistent with other circuit

parameters.

IV. 3. Experimental Measurements and Analysis of 1/f Noise in Quartz Resonators

The level of 1/f frequency noise in quartz resonators has been measured using phase bridges and

complete oscillators [37,38,42-47]. Unfortunately much of the data in the literature is unusable for
modeling because the unloaded Q-factor is unknown. (Our case is even more restrictive because we also
need to know the electrode size). The phase bridge approach has the advantage that the unloaded 0-
factor can be easily measured and the noise in the measurement electronics can be evaluated
Independent of the resonator. If resonator pairs are used, the noise of the driving source can generally
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be neglected and the pair can operate at virtually any frequency [45. The oscillator approach makes it
possible to compare many different resonators one at a time. The noise of individual oscillators can be
derived by measuring the phase noise between 3 oscillators [481.

Figure 3 taken from [381 Is one of several studies showing that the 1/f level Is virtually
independent of the loaded 0-factor. This is In complete agreement with the theoretical model. In
practical oscillators there is a dependence on loaded 0-factor only when the phase noise of the
sustaining electronics contributes to the overall noise level.

We have analyzed 1/f frequency noise as a function of unloaded 0, volume under the electrodes,
and frequency. For a given resonator geometry and manufacturer, we have taken the best values of
Sy(f) reported In an attempt to remove the effects of poor crystals or electronics. In Fig. 4 we have

taken all of the precision data available with unloaded 0-factor, electrode volume, and frequency
stability and plotted them according to the three models. Except for the 2.5 MHz resonator where Qvo -
0.95x1 013, the 0vo product for all resonators is. near 1.2x1 013 (this is close to the material limit for
AT and SC cut resonators). The curve labeled Ky shows the fit of the data to the model [37

Sy (f) -Ky /f(3 x 10-s /0 4 ). Ky varies about a factor of 500 for 0-factors between 105 and
3.8x1 06 (resonator frequencies between 2.5 and 100 MHz).

The curve labeled K# shows the fit of the same resonator data to the model [38
S (f) P K (3 x 1010 /0 4 ). K. varies about a factor of 10 for the same range in 0-factor. Curves Pie

and Pb show the fit of the same resonator data to the model Sy(f) - f/f (Vol/ 4 ), where Do is for SC
and AT resonators with electrodes plated on the resonator and Pb is for BVA-style AT and SC resonators
[43). Volume between the electrodes (in cm 3) is used to approximate the volume of quartz
contributing to the output power. The P factors are remarkably constant for 0-factors from 10 to 3.8

Figure 5 shows the dependence of 09 on 0-factor for a number of electroded resonators of the
same type from a single manufacturer for 3 resonator types as measured by Norton [44,511. The wide
variation in 0p9 for the same style resonator and 0-factor indicates that acoustic loss is not the only

mechanism contributing to the noise level. The data for this graph was taken from measurements of
(100 s) and may have been biased high by random walk FM noise In some resonators.

IV. 4. Discussion

The analysis of the most stable quartz resonators indicates that the 1/f frequency noise level
depends on volume between the electrodes and unloaded 0-factor In relatively good agreement with eq.
(30) considering the fact that the estimation of <o> and N Is only approximative. The nonadjustable
parameters Pe and Pb are virtually constant versus unloaded 0-factor, which is In stark contrast to
fitn ptgaranters K# and Ky. It is ot surprising to us that Pe and Ob are different for the two types of

19



resonators, since energy trapping and electrode stress are considerably different. Fig. 5 shows that
there are other noise processes besides acoustic losses that affect the 1/f noise level in some
resonators.

Although we have analyzed only the data for a few resonators, the consistency of 16 and Ob over a
factor of 40 in 0-factor and resonator frequency and the general agreement for the magnitude of p
between theory and experiment give us some confidence that this new model can be used to predict the
best performance of different resonator geometries.

This new volume model predicts that a resonator having smaller electrodes would have a lower
level of 1/f frequency noise than another one with the same frequency and 0-factor but larger diameter
electrodes. The decrease in electrode area would increase the impedance levels and degrade the wide-
band noise somewhat. For most resonators the wideband noise is dominated by the electronics and not
the resonator. The Increase In series resistance, obtained by decreasing the electrode area by a factor
of 4, would probably be tolerable from the standpoint of wideband noise but might require a change in

loop gain.
BT resonators are potentially interesting In that they offer a Ovo product approximately three

times higher than that of AT and SC resonators. BT cuts are roughly as sensitive to temperature
transients as AT cuts. Therefore to achieve parts in 10-14 frequency stability with BT cuts would
require temperature stabilities of order 10-9 K/s or 100 times better than is required for SC cut
resonators [511.

Based on these early observations It appears that the level of 1/f frequency noise in quartz may
yet be Improved to the low 10-14 level by applying one or more of the following techniques: reducing the
electrode area, using BVA type resonators, going to lower frequencies, using BT cut resonators. It must
be remembered that acceleration Induced effects become more dominant as the stability Improves.

V. PRACTICAL APPUCATION TO QUANTUM 1/1 NOISE IN INFRARED DETECTORS

Quantum 1/f Noise Is a fundamental aspect of quantum mechanics, representing

universal fluctuations of physical process rates R and cross sections a given by the fractional

(or relative) spectral density S(f) - 2cA/fN. Therefore It is present In the process rates

generating the dark current observed In junction photodetectors, such as diffusion (scattering

cross sections fluctuate) in diffusion-limited junctions, and recombination in the

recomblnatlon-Ilmited regime. One is therefore tempted to expect similar fluctuations In the
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photogeneraton of electron-hole pairs. However, as we show below, the corresponding quantum

1/f coefficient Is zero, precluding the existence of quantum 1/f fluctuations In the photo-

generation rate. Here N is the number of carriers used to define or measure the process rate or

cross section considered.

For an arbitrary process Involving a total of n incoming and outgoing charged particles,

the nonrelativistic quantum 1/f coefficient is given [521 by

n
2czA - (4aI3c 2 ) q1iljqlqj(vi-vj) 2 , (32)

i;j=l

where the summation runs over the charges qi and velocities vi of all incoming ('qi--1) and

outgoing (i-.1) particles (altogether n of them) in the process whose quantum 1/f noise we

want to find, and a is Sommerfeld's fine-structure constant, e2/Kc-1/137. In a photoelectric

process a photon (q-0) is absorbed, and a pair of oppositely charged particles is generated

(1-1) with velocities vi and V2 which are either zero, or quickly decay to zero in a time

negligible with respect to the reciprocal frequency at which we calculate the quantum 1/f noise.

Thus in our case there are no Incoming charged particles, and n-0+2-2. The aA coefficient of a

photogeneration process is therefore zero,

aAph - (1,1)+(2,2)+(1,2)+(2,1) - 0+0+ (4a/3xc2 )(Vl-v2) 2 - 0. (33)

All photogenerated carriers of the right sign are collected in the well of the charge-coupled

device, although they may generate quantum 1/f voltage fluctuations on their way. Since

usually only the number of carriers collected at read-out matters, no quantum 1/f noise will be

observed in a photoelectric CCD as long as the dark current is negligible with respect to the

photocurent. This is in agreement with the experiments performed by Mooney [531 of RADC-
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Hanscom AFS. The same considerations apply to Metal-Insulator-Semlconductor (MIS)

photodetectrs [541.

VI. OUANTIIM 1f MOBLITY FLUCTUATIONS IN HOMOGENEOUS SEMICONDUCTOR SAMPLES

VI. 1. Introduction

A first principles calculation of quantum 1/f cross correlations performed [55] for the
first time in 1987 by one of us [561 has yielded a slightly different result compared to earlier
expectations. This same new form of the quantum 1/f cross correlations was derived also with
a different method by Van Vilet in 1989. It differs from the old form used in the 1985
calculation of Kousik et. al. by a correction which is zero when the momentum changes of the two
current carriers involved in the cross correlation are identical, but increases to finite values
when the momentum differences caused by the scattering process are different. The correction

is proportional to the squared difference of the two momentum changes. We have repeated all
calculations In the original paper by Kousik et.al. [561, obtaining both for impurity scattering
and for the various types of phonon scattering new analytical expressions which show a
considerable Increase of the final quantum 1/f noise. The results obtained are applicable both to
direct and Indirect bandgap semiconductors.

We have performed an analytical calculation of mobility fluctuations in silicon and

gallium arsenide, using the new quantum 1/f cross-correlations formula. This calculation is of
major importance for the 1/f noise-related optimization of the two types of materials, and of
the many devices constructed with them for military and civilian applications in the electronic

and opto-electronic industry.
The new cross-correlation formula gives the cross-spectral density which describes the

way In which simultaneous quantum 1/f scattering rate fluctuations AW observed in the
direction of the outgoing scattered wave-vector K' are correlated with those in the K" direction,
when the two corresponding incoming current carriers have the wave vectors KI and K2:

SAW(K1 ,K';K 2 ,K";f)

- (2/3xf) (hmc)2 W Ki ,K'W K2,K'[(K'-K 1)2 +(K"-K 2) 2 18Ki ,K2. (34)

The form conjectured by us earlier had 2(K'-K1 )(K*-K 2) in place of the rectangular bracket.
The difference between the rectangular bracket and 2(K-K1)(K"-K2) is the perfect square
[(K'-K1)-(K'-K 2)J2 . Therefore we expect the new results to be always larger than the

results obtained on the basis of the previously conjectured form.
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Vt. 2. Impurity Scattering

For Impurity scattering of electrons in solids, fluctuations ,c of the collision times r
will cause mobility fluctuations

Alband(t) - [e/m<<v2 >>]KvK 2 Ac(t)nK, (35)

where <<v2 >> is both the average over all states of wave-vectors K, with occupation numbers

nK, In the conduction band, and the thermal equilibrium average of the quadratic carrier

velocities. With the help of the relation

1/c(K) - (v/ex3)J(1 - cosO'/cose)WK,K'd 3 K', (36)

the mobility fluctuations are reduced to fluctuations of the elementary scattering rates WK,K,

governed by Eq. (34). Here V is the volume of the normalization box which disappears in the

final result, e and e' respectively the angles K and K' form with the direction of the applied

field. One finally obtains after tedious multiple Integrations

W.2 SAI(f) - [256xai 2e4 11l 2 /3m* 8 Z 4 e8 N 2](1/f)ZKK 1 0[ln(1 +a 2 )-a 2 /(1 +a 2 )]-

3[(2a 2 +a 4 )/(1 +a 2 )-21n(1 +a 2 )]F(EK)[.KvK 2 c(K) F(EK)] "2 , (37)

where a-2K1(c, ic2 -e2 n(T)/rkBT, n(T) is the electron concentration, F(EK)-exp(EF-EK) for

non-degenerate semiconductors, Ni the concentration of impurities of charge Ze and e the

dielectric constant. The corresponding partial Hooge parameter for impurity scattering is thus

ai - [4" zxaf5Nc/3m*7/2(kBT)3/2c2 ] jdxx 1 1/2 e-X
0

[In(bx+l)-bx/(bx+l)]- 3 [(2bx+b 2 x2 )/(bx+l)-21n(bx+l)]

4 Jdxx 3 e'X[ln(bx+1)-bx/(bx+1)]-1 )- 2 . (38)
0

This result is graphed below for three different values of the donor concentration Nd and Is

compared with old results obtained by simply recalculating the old analytical expression [561
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As expected, the new cross correlation formula leads to higher ai values than the previously

conjectured expression. This was mentioned in connection with Eq. (34) above.

VI. 3. Acoustic Electron-Phonon Scattering

In this case the calculation Is similar, and leads to the result
Ioe

aac - [32xaNcm*C7 113 /3C 2 kBT) 4 1{(1/R 2 ) Jdxx 4

1

((x-1 ) 7 /7+(R+1 )(x-1 ) 6 /6+R(x-1 )5/51

[(x-1 )5 /5+(R+1 )(x-1 )4 /4+R(x-1 )3 /3]exp(-x 2 /4 R)
1

+ Jdxx' 4 [(x+1) 5 /5-(x+1) 6 /6+(x-1) 5 /5+(x-1)6/6]
0

[(x+1 ) 3 /3+(x-1) 4 /4+(x- 1) 3 /3-(x+1 ) 4 /4]exp(-x 2 /4 R)

+ Jdxx4[(x+1) 5 /5-(x+1) 6 /61[(x+1) 3/3-(x+1) 4 /4]exp(-x 2 /4R)), (39)
1

where R-kBT/2m*Cl 2, Cl is the deformation potential, and Nc Is the effective density of states

for the conduction bend.
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Vl. 4. Non-Polar Optical Phonon Scattering

This time one obtains

an.o.ph - [Sir2 /2w aNchj2/3m*5/2c2rno]{ fdxx 5 / 2

0

[(F+1 )(x-1) 1 /29(x-1 )+F(x+ I 1 /2 ] 4

[(F+1) 2 (x-1)(2x-1)0(x-1)+F 2 (x+l )(2x+1)]exp(-h(oox/kBT))
to

{ jdxx3 12[(F+1)(x-1) 11 2 6(x-1)+F(x+1)/21-'lexp(-coox/kBT)} "2 , (40)
0

where F-[exp(o/kBT)-1 ]- and oo is the optical phonon frequency.

VI. 5. Polar Optical Phonon Scattering

Proceeding as in Secs. 2 and 4, we obtain

Gxp.o.ph - [Sx 2 wlaNc2/3m*5/2c2w)]{ fdxx4

0

[F 2 (x+1)1/21n(2x 1
/
2 +2(x+1)1/2)

+(F+1) 2 (x-1)l1 2 1n(2xl/ 2 +(x-1)1 12 ) 0 (x-1) ] exp(- hwlx/kBT)

(F+I )arcsinh(x-1) 1 / 2 6(x-t )+Farcsinh(x1/2)|' 41. (41)

Here q)l is the longitudinal phonon frequency.

VI. 6. Intervalley Scattering

This type of scattering, present in indirect bandgap semiconductors, transfers electrons

from one of the six minima (or valleys) of the conduction band energy in k-space to one of the

other five minima. Transitions between a valley and the nearest valley, which is along the same

k-space direction in the next copy of the first Brilloin zone in the periodic zone scheme, are of

the Umklapp type, and are called g-processes. Transitions to the four valleys present in the

same zone along the other two k-space directions are called f-processes. Repeating a previous

calculation [56] on the basis of the new cross-correlation formula (34), we obtain fo g-
processes

Ug - [8x4 -aiNch213m*5/2c2)ijl{ odxx 5 / 2

0
[(F+1)(X-1) 11 2 0(x-1)+F(x+ )1/21-4

[(F+1)2(x-1)(2x-1)(x-1)+F2(x+1)(2x+l)]exp(rijxlksT))
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{ Jdxx3 12 [(F+l)(x-1)1/20(x-1)+F(x+l)l/ 2]1-exp(-ho)ijx/kBT))- 2 , (42)
0

where hoiij Is the phonon energy corresponding to the momentum difference required by the

intervalley transition. For the corresponding f-process we obtain [57]
af - (ko/qo)2ctg, (43)

where ko/qo is the ratio between the position vector of a conduction band energy minimum in k

space, and twice the distance of the minimum from the Brillouin zone boundary, 0.85/0.3 for
silicon. There are three g-type alphas agi, ag2 and ag3 (from LA, TA and LO phonons

repectively) and three f-type contributions a(fl, af2 and af3 (from TA, LA and TO phonons).

Their values are given in the graph below and are a few times larger than the old values.

Alpha for Intervalley Scattering Processes

200

, Alpha gi
SAlpha g2

100 4& Alpha g3
.4-. Alpha fl

, Alpha f2
aAlpha M

0.
0 100 200 300 400

Tempwatur. In K

The various quantum 1/f contributions derived here can be approximately superposed to

yield the resultant quantum 1/f coefficient according to the rule

aH- Ei(1. 1/)2 al (44)
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